Calibration Certificate

Issued By: Castle Group Ltd

Date Of Issue : 13/06/17 Certificate No : 00000/00000

Page 1 of 5

Castle

All instruments are tested to check compliance with particular specifications. These specifications may be appropriate British Standards, or if the instrument was not originally designed to meet any British Standard, or when the instrument was originally manufactured a relevant British Standard did not exist, the instrument will be tested to the manufacturer's original specification.

Absolute acoustic calibration of acoustic calibrators and sound level meters is checked at one or more standard frequencies against an independent sound source with calibration directly traceable to the National Physical Laboratory (NPL) in the United Kingdom. The NPL reference applicable for the calibration of the test equipment is shown below.

The performance of the instrument was determined by comparison with the manufacturers' specification as found in the instrument handbook or other technical publication. Any significant uncertainty of the measuring system will also be included.

The instrument was allowed to stabilise for a period of 30 minutes prior to measurements made.

The ambient temperature and relative humidity throughout calibration were 25 ± 2 °C and 50% RH respectively.

Instruments used to carry out this calibration are as follows: -Multifunction Calibrator 4226 Serial No: 1551589 Applicable Reference: S6645.

Subject of Calibration: GA117 Instrument: Integrating 1/1 Octave Band SLM Serial No: 00000

Preamplifier Data Preamplifier Type: SV18 Preamplifier Serial No: 00000

Microphone Data Microphone Type: ACO 7052E Microphone Serial No: 00000

Basis Of Test: Compliance to IEC 61672-1 : 2002 Class 1, & IEC 61260: 1995 Class 1

Calibrated By: A N Engineer (Approved Signatory)

Date of Calibration: 13 Jun 2017

Completed Status: Pass

Client: End User Company Name Address: Place Street Location Town County Postcode

Client Reference: If Applicable

Checked By: A N O Engineer (Approved Signatory) Recalibration Due: 01 Jul 2018

Castle Group Ltd

Salter Road, Scarborough Business Park, Scarborough, North Yorkshire YO11 3UZ United Kingdom t: +44 (0)1723 584250 f: +44 (0)1723 583728 e: <u>sales@castlegroup.co.uk</u> www.castlegroup.co.uk

Page 2 of 5 Pages

Date: 13/06/17 Certificate No: 00000/00000 Calibrated By: A N Engineer

ACOUSTICAL RESPONSE TO SUPPLIED CALIBRATOR

The following reading was obtained from the supplied calibrator. Type: Serial Number:						
Frequency Reference Indicated SPL Adjusted SPL						
1kHz 94.0 dBA dBA*						

*Includes microphone cavity correction at 1kHz. Calibrate to this level when used with supplied calibrator.

ACOUSTICAL REFERENCE The method of calibration employed was a direct-coupled acoustic reference source.

Frequency	Reference	Indicated SPL	Adjusted SPL
1kHz	94.0 dBA	dBA	94.0dBA

ACOUSTICAL SCALING The method of calibration employed was a direct-coupled acoustic reference source.

SPL (1KHz)	HIGH RANGE	TOLERANCE
94 dBA	dBA	± 0.7dB
104 dBA	dBA	± 0.7dB
114 dBA	dBA	± 0.7dB

ACOUSTICAL RANGE The method of calibration employed was a direct-coupled acoustic reference source.

SPL (1KHz)	Low Range	High Range	TOLERANCE
94 dBA	dBA	dBA	± 0.5 dB

FREQUENCY WEIGHTING The method of calibration employed was a direct-coupled acoustic reference source.

FREQ (Hz)	1K	2К	4K	8K	12.5K	500	250	125	63	31.5
A (dB)										
C (dB)										
Z (dB)										
TOL ±	1.0 dB	1.0 dB	1.0 dB	+1.5, -3dB	+3.0, -6dB	1.0 dB	1.0 dB	1.0 dB	1.5 dB	1.5 dB

INVERSE A-WEIGHTING The method of calibration employed was a direct-coupled acoustic reference source

FREQ. (Hz)	1K	2К	4K	8K	12.5K	500	250	125	63	31.5
Reading										

INFERRED MICROPHONE RESPONSE Pressure correction factor. To be added to acoustic response.

FREQ (Hz)	1K	2K	4K	8K	12.5K	500	250	125	63	31.5

Page 3 of 5 Pages

Date: 13/06/17 Certificate No: 00000/00000 Calibrated By: A N Engineer

LINEARIT	Y RESPON	SE The method	employed was	a direct electric	al signal injectio	on on the referer	nce range.
SPL (8KHz) WRT scale	10 dB Steps	SPL (8KHz) ^ WRT scale +	10 dB Steps	SPL (8KHz) [/] WRT MSD fo	1 dB Steps	SPL (8KHz) ' WRT FSD fo	1 dB Steps
Target	Reading	Target	Reading	Target	Reading	Target	Reading
35.0		40.0		36.0		126.0	
45.0		50.0		37.0		127.0	
55.0		60.0		38.0		128.0	
65.0		70.0		39.0		129.0	
75.0		80.0		40.0		130.0	
85.0		90.0		41.0		131.0	
95.0		100.0		42.0		132.0	
105.0		110.0		43.0		133.0	
115.0		120.0		44.0		134.0	
125.0		130.0					
135.0							

Castle

LINEARITY RESPONSE The method employed was a direct electrical signal injection on the reference range.

LEQ (8KHz) WRT scale			LEQ (8KHz) 10 dB Steps WRT scale +5		LEQ (8KHz) 1 dB Steps WRT MSD for 10dB		LEQ (8KHz) 1 dB Steps WRT FSD for 10dB	
Target	Reading	Target	Reading	Target	Reading	Target	Reading	
35.0		40.0		36.0		126.0		
45.0		50.0		37.0		127.0		
55.0		60.0		38.0		128.0		
65.0		70.0		39.0		129.0		
75.0		80.0		40.0		130.0		
85.0		90.0		41.0		131.0		
95.0		100.0		42.0		132.0		
105.0		110.0		43.0		133.0		
115.0		120.0		44.0		134.0		
125.0		130.0						
135.0								

Page 4 of 5 Pages

Date: 13/06/17 Certificate No: 00000/00000 Calibrated By: A N Engineer

TIME WEIGHTING

TONE BURST The method employed was a direct electrical signal injection on the reference range.

Time Weighting Tone Burst	Reference Level (dBA) -3dB WRT FSD	Response	Tolerance
Fast (200 ms)	131.0dBA (Ref -1dB)	dBA	± 0.8dB
Fast (2 ms)	114.0dBA (Ref -18 dB)	dBA	+1.3, -1.8 dB
Fast (0.25 ms)	105.0dBA (Ref-27 dB)	dBA	+1.3, -3.3 dB
Slow (200 ms)	124.6dBA (Ref -7.4 dB)	dBA	± 0.8dB
Slow (2 ms)	105.0dBA (Ref-27 dB)	dBA	+1.3, -3.3 dB

TIME AVERAGING

TONE BURST The method employed was a direct electrical signal injection on the reference range.

Tone Burst Duty Factor	Target Level (dBA)	Response	Tolerance
1/1000 (60 Seconds)	105.0dBA (FSD-30)	dBA	± 1.0dB
1/10,000 (6 Minutes)	95.0dBA (FSD-40)	dBA	\pm 1.0dB

OCTAVE FILTER

INSERTION LOSS The method employed was a direct electrical signal injection TESTED AGAINST 1/1 OCTAVE MODE

FREQUENCY (Hz)	SPL (dBlin)	OCTAVE (dBlin)	TOLERANCE (dB)
31.5			+0.5 / -1.0
63			+0.5 / -1.0
125			+0.5 / -1.0
250			+0.5 / -1.0
500			+0.5 / -1.0
1,000			+0.5 / -1.0
2,000			+0.5 / -1.0
4,000			+0.5 / -1.0
8,000			+0.5 / -1.0

Linear response tested electrically without microphone 'pressure correction' for reference purposes.

Page 5 of 5 Pages

Date: 13/06/17 Certificate No: 00000/00000 Calibrated By: A N Engineer

1/1 OCTAVE RESPONSE The method employed was a direct electrical signal injection ATTENI IATION:

FREQUENCY CENTRE (Fm)	REFERENCE (dB)	Fm x 2 (dB)	Fm/2 (dB)	TOLERANCE (dB)
31.5Hz				<u>≥</u> 18
63Hz				<u>≥</u> 18
125Hz				<u>≥</u> 18
250Hz				≥18
500Hz				<u>≥</u> 18
1,000Hz				<u>≥</u> 18
2,000Hz				<u>≥</u> 18
4,000Hz				≥18
8,000Hz				<u>≥</u> 18

Uncertainties of the measurement

The uncertainties in the table of results correspond to an estimated confidence probability of not less than 95%.